Hi guys! Im back! Its Science time! This is actually our Homework in Chemistry.. I figured out that not all people know this 5th Phase of matter. So here it is! I just took out the essential stuffs!
Bose–Einstein condensate
From Wikipedia, the free encyclopedia
It has been suggested that Bose–Einstein condensation: a network theory approach be merged into this article or section. (Discuss) Proposed since April 2011. |
Velocity-distribution data of a gas of rubidiumatoms, confirming the discovery of a new phase of matter, the Bose–Einstein condensate. Left: just before the appearance of a Bose–Einstein condensate. Center: just after the appearance of the condensate. Right: after further evaporation, leaving a sample of nearly pure condensate.
A Bose–Einstein condensate (BEC) is a state of matter of a dilute gas of weakly interacting bosons confined in an external potential and cooled totemperatures very near absolute zero (0 K or −273.15 °C[1]). Under such conditions, a large fraction of the bosons occupy the lowest quantum state of the external potential, at which point quantum effects become apparent on a macroscopic scale.[examples needed]
This state of matter was first predicted by Satyendra Nath Bose and Albert Einstein in 1924–25. Bose first sent a paper to Einstein on the quantum statistics of light quanta (now called photons). Einstein was impressed, translated the paper himself from English to German and submitted it for Bose to the Zeitschrift für Physik which published it. Einstein then extended Bose's ideas to material particles (or matter) in two other papers.[2]
Seventy years later, the first gaseous condensate was produced by Eric Cornell and Carl Wieman in 1995 at the University of Colorado at BoulderNIST-JILA lab, using a gas of rubidium atoms cooled to 170 nanokelvin (nK) [3] (1.7×10−7 K). For their achievements Cornell, Wieman, and Wolfgang Ketterle at MIT received the 2001 Nobel Prize in Physics.[4] In November 2010 the first photon BEC was observed.[5]
The slowing of atoms by the use of cooling apparatus produced a singular quantum state known as a Bose condensate or Bose–Einstein condensate. This phenomenon was predicted in 1925 by generalizing Satyendra Nath Bose's work on the statistical mechanics of (massless) photonsto (massive) atoms. (The Einstein manuscript, once believed to be lost, was found in a library at Leiden University in 2005.[6]) The result of the efforts of Bose and Einstein is the concept of a Bose gas, governed by Bose–Einstein statistics, which describes the statistical distribution of identical particleswith integer spin, now known as bosons. Bosonic particles, which include the photon as well as atoms such as helium-4, are allowed to share quantum states with each other. Einstein demonstrated that cooling bosonic atoms to a very low temperature would cause them to fall (or "condense") into the lowest accessible quantum state, resulting in a new form of matter.
This transition occurs below a critical temperature, which for a uniform three-dimensional gas consisting of non-interacting particles with no apparent internal degrees of freedom is given by:
where:
is | the critical temperature, | |
is | the particle density, | |
is | the mass per boson, | |
is | the reduced Planck constant, | |
is | the Boltzmann constant, and | |
is | the Riemann zeta function; (sequence A078434 in OEIS) |
Current research
Compared to more commonly encountered states of matter, Bose–Einstein condensates are extremely fragile. The slightest interaction with the outside world can be enough to warm them past the condensation threshold, eliminating their interesting properties and forming a normal gas. It is likely to be some time before any practical applications are developed.[citation needed]
Nevertheless, they have proven useful in exploring a wide range of questions in fundamental physics, and the years since the initial discoveries by the JILA and MIT groups have seen an explosion in experimental and theoretical activity. Examples include experiments that have demonstrated interference between condensates due to wave-particle duality,[14] the study of superfluidity and quantizedvortices, the creation of bright matter wave solitons from Bose condensates confined to one dimension, and the slowing of light pulses to very low speeds using electromagnetically induced transparency.[15] Vortices in Bose–Einstein condensates are also currently the subject of analogue gravity research, studying the possibility of modeling black holes and their related phenomena in such environments in the lab. Experimentalists have also realized "optical lattices", where the interference pattern from overlapping lasers provides a periodic potential for the condensate. These have been used to explore the transition between a superfluid and a Mott insulator,[16] and may be useful in studying Bose–Einstein condensation in fewer than three dimensions, for example the Tonks-Girardeau gas.
Bose–Einstein condensates composed of a wide range of isotopes have been produced.[17]
Related experiments in cooling fermions rather than bosons to extremely low temperatures have created degenerate gases, where the atoms do not congregate in a single state due to the Pauli exclusion principle. To exhibit Bose–Einstein condensation, the fermions must "pair up" to form compound particles (e.g. molecules or Cooper pairs) that are bosons. The first molecular Bose–Einstein condensates were created in November 2003 by the groups of Rudolf Grimm at the University of Innsbruck, Deborah S. Jin at the University of Colorado at Boulder and Wolfgang Ketterle at MIT. Jin quickly went on to create the first fermionic condensate composed of Cooper pairs.[18]
In 1999, Danish physicist Lene Vestergaard Hau led a team from Harvard University which succeeded in slowing a beam of light to about 17 metres per second[clarification needed]. She was able to achieve this by using a superfluid. Hau and her associates at Harvard University have since successfully made a group of condensate atoms recoil from a "light pulse" such that they recorded the light's phase and amplitude, which was recovered by a second nearby condensate, by what they term "slow-light-mediated atomic matter-wave amplification" using Bose–Einstein condensates: details of the experiment are discussed in an article in the journal Nature, 8 February 2007.[19]
Researchers in the new field of atomtronics use the properties of Bose–Einstein condensates when manipulating groups of identical cold atoms using lasers.[20
No comments:
Post a Comment